Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Скачать бесплатно книгу Сасскинд Леонард - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики в формате fb2, epub, html, txt или читать онлайн
Закладки
Читать
Cкачать
A   A+   A++
Размер шрифта
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард

Введение

Столько надо было грокнуть, а начинать приходилось почти что с нуля.

Роберт Хайнлайн. Чужой в стране чужих

Где-то в восточноафриканской саванне немолодая львица выслеживает себе ужин. Она бы предпочла медлительную добычу преклонного возраста, но всё, что есть, — лишь молодая резвая антилопа. Внимательные глаза жертвы идеально размещены по сторонам её головы, чтобы в ожидании нападения держать под наблюдением всю окружающую местность. Глаза же хищника смотрят прямо вперёд, фокусируясь на жертве и оценивая расстояние.

На этот раз «широкоугольные сканеры» антилопы пропустили хищника, подобравшегося на расстояние броска. Сильные задние лапы львицы толкают её к перепуганной жертве. Извечная погоня начинается снова.

Пусть и обременённая годами, большая кошка — отличный спринтер. Поначалу отрыв сокращается, но от резких движений мощные мускулы львицы испытывают кислородное голодание и постепенно слабеют. Вскоре природная выносливость антилопы побеждает: в какой-то момент относительная скорость кошки и её добычи меняет знак, сокращавшееся прежде отставание начинает расти. Львица чувствует, что фортуна ей изменила, Её Королевское Величество признаёт поражение и возвращается в свою засаду в кустах.

Пятьдесят тысяч лет назад усталый охотник находит заваленный камнем вход в пещеру. Если отодвинуть тяжёлое препятствие, получится безопасное место для отдыха. В отличие от своих обезьяноподобных предков, охотник стоит выпрямившись. Но в этой позе он безуспешно толкает валун. Выбирая более подходящий угол, он отставляет ноги подальше. Когда положение его тела оказывается почти горизонтальным, основная компонента приложенной силы начинает действовать в нужном направлении. Камень сдвигается.

Расстояние? Скорость? Перемена знака? Угол? Сила? Компонента? Что за невероятно сложные вычисления происходят в мозгу охотника, не говоря уже о кошке? Эти технические понятия обычно встречаются в учебниках физики для старших классов. Где кошка научилась измерять не только скорость добычи, но и, что более важно, относительную скорость? Брал ли охотник уроки физики, чтобы разобраться с понятием силы? И ещё тригонометрии, чтобы использовать синусы и косинусы для вычисления компонент?

Истина, конечно же, в том, что у всех сложных форм жизни есть встроенные инстинктивные представления о физике, которые жёстко «прошиты» эволюцией в их нервной системе [1] . Без этого предустановленного физического «софта» выжить было бы невозможно. Мутации и естественный отбор сделали всех нас физиками, даже животных. Большой объём мозга у людей позволил этим инстинктам развиться в понятия, которыми мы оперируем сознательно.

Самоперепрошивка

На деле все мы являемся классическими [2] физиками. Мы «нутром чувствуем» силу, скорость и ускорение. Роберт Хайнлайн в научно-фантастическом романе «Чужой в стране чужих» (1961) придумал слово «грокать» [3] для выражения этого глубоко интуитивного, почти физиологического понимания явления. Я грокаю силу, скорость и ускорение. Я грокаю трёхмерное пространство. Я грокаю время и число 5. Траектории камня или стрелы поддаются гроканью. Но мой стандартный встроенный грокер ломается, когда я пытаюсь применить его к десятимерному пространству-времени, или к числу 101000, или, что ещё хуже, к миру электронов и принципу неопределённости Гейзенберга.

С наступлением XX века наша интуиция попала в колоссальную аварию; физика неожиданно оказалась сбита с толку совершенно незнакомыми явлениями. Моему деду по отцовской линии было уже десять лет, когда Альберт Майкельсон и Эдвард Морли открыли, что орбитальное движение Земли сквозь гипотетический эфир невозможно зарегистрировать [4] . Электрон был открыт, когда деду стало за двадцать; когда ему стукнуло тридцать, была опубликована специальная теория относительности Альберта Эйнштейна, а когда он перешагнул порог средних лет, Гейзенберг открыл принцип неопределённости. Никаким способом эволюционный пресс не мог бы привести к выработке интуитивного понимания миров, столь радикально отличающихся от привычного нам. Но что-то в наших нервных системах, по крайней мере у некоторых из нас, оказалось готово к фантастической перепрошивке, позволяющей не только интересоваться малопонятными явлениями, но и создавать математические абстракции, порой совершенно контринтуитивные, для объяснения этих явлений и манипуляции с ними.

Скорость первой вызвала потребность в перепрошивке — огромная скорость, соперничающая с самим светом. Ни одно животное до двадцатого века не двигалось быстрее сотни миль в час (160 км/ч), и даже по сегодняшним меркам скорость света столь велика, что для всех, кроме учёных, он как бы и не движется вовсе, а просто мгновенно появляется, когда его включают. Древним людям не требовалось прошивок для работы со сверхвысокими скоростями, такими как скорость света.

Перепрошивка в вопросе о скорости произошла внезапно. Эйнштейн не был мутантом; десять лет, пребывая в полной безвестности, он бился над тем, чтобы заменить свою старую ньютоновскую прошивку. Но физикам того времени, должно было казаться, что среди них неожиданно появился человек нового типа — некто, способный видеть мир не как трёхмерное пространство, а как четырёхмерное пространство-время.

Потом Эйнштейн бился ещё десять лет, на сей раз уже на виду у всех физиков, за объединение того, что он назвал специальной теорией относительности, с ньютоновской теорией гравитации. Итогом этих усилий стала общая теория относительности, которая глубоко изменила все наши традиционные представления о геометрии. Пространство-время стало пластичным, способным искривляться и сворачиваться. На присутствие материи оно реагирует в чём-то подобно резиновому листу, прогибающемуся под нагрузкой. Прежде пространство-время было пассивным, его геометрические свойства — неизменными. В общей теории относительности пространство-время становится активным игроком: оно может деформироваться массивными объектами, такими как планеты и звёзды, но это невозможно представить без сложной дополнительной математики.

В 1900 году, за пять лет до появления на сцене Эйнштейна, другая, ещё более удивительная смена парадигмы началась вслед за открытием того, что свет состоит из частиц, называемых фотонами или, иногда, световыми квантами. Фотонная [5] теория света была лишь предвестником грядущей революции; умственные упражнения на этом пути оказались намного абстрактнее всего, что встречалось прежде. Квантовая механика — это нечто большее, чем новый закон природы. Она вызвала изменение правил классической логики, то есть обычных правил мышления, которые каждый здравомыслящий человек использует в рассуждениях. Она казалась безумной. Но безумна она или нет, — физики смогли перепрошить себя в соответствии с новой логикой, которую называют квантовой. В главе 4 я объясню всё, что вам понадобится знать о квантовой механике. Приготовьтесь, что будете сбиты столку. Это случается со всеми.

Относительность и квантовая механика с самого начала невзлюбили друг друга. Попытки насильственно их «поженить» имели катастрофические последствия — на каждый вопрос, заданный физиками, математика выдавала чудовищные бесконечности. Полвека ушло на то, чтобы помирить квантовую механику со специальной теорией относительности, но в конце концов математические несовместимости были устранены. К началу 1950-х годов Ричард Фейнман, Юлиан Швингер, Синъитиро Томонага и Фримен Дайсон [6] заложили фундамент для объединения специальной теории относительности и квантовой механики, получивший название квантовой теории поля. Однако общая теория относительности (эйнштейновский синтез специальной теории относительности с ньютоновской теорией гравитации) и квантовая механика оставались непримиримы, причём явно не от недостатка миротворческих усилий. Фейнман, Стивен Вайнберг, Брайс Де Витт и Джон Уилер пытались проквантовать уравнения Эйнштейна, но все получали в итоге лишь математический абсурд. Пожалуй, это было и неудивительно. Квантовая механика правила миром очень лёгких объектов. Гравитация, напротив, представлялась значимой только для очень тяжёлых скоплений материи. Казалось, не существует ничего достаточно лёгкого, чтобы существенна была квантовая механика, и вместе с тем достаточно тяжёлого, чтобы надо было учитывать гравитацию. В результате многие физики во второй половине двадцатого столетия считали поиски такой объединённой теории бесполезным занятием, подходящим лишь для сумасшедших учёных и философов.

Читать книгуСкачать книгу