Всё о материалах для каменного дома

Автор: Мельников Илья  Жанр: Хобби и ремесла  Дом и Семья  Год неизвестен
Скачать бесплатно книгу Мельников Илья - Всё о материалах для каменного дома в формате fb2, epub, html, txt или читать онлайн
Закладки
Читать
Cкачать
A   A+   A++
Размер шрифта
Всё о материалах для каменного дома - Мельников Илья

СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

Строительные материалы, применяемые при производстве каменных работ, характеризуются определенными физическими, механическими и химическими свойствами, имеющими в каждом конкретном случае решающее значение.

Среди физических свойств строительных материалов выделяют прежде всего плотность. Она определяется отношением массы тела к занимаемому объему, включая имеющиеся в нем пустоты и поры. Выражается эта величина в кг/м3.

Различают истинную плотность и насыпную. Истинная плотность – это предел отношения массы к объему, когда объем стягивается к точке, в которой определяется плотность тела или вещества без учета имеющихся в них пустот и пор. Насыпная – это отношение массы зернистых материалов ко всему занимаемому ими объему, включая пространства между частицами.

У таких пористых материалов, как например кирпич, средняя плотность меньше истинной, у плотных (гранит) – практически равна истинной плотности.

Другое важное свойство – пористость, т.е. степень заполнения объема материала порами, выражается в процентах.

По величине пор выделяют мелкопористые – размеры пор составляют сотые и тысячные доли миллиметра – и крупнопористые материалы – размеры пор от десятых долей миллиметра до 1...2 мм.

Пористость материалов влияет на такие свойства, как прочность, водопоглощение, морозостойкость, теплопроводность и др. Рассмотрим их.

Водопоглощение – это способность материала впитывать и удерживать в своих порах влагу. Водопоглощение определяют по массе или по объему и выражают в процентах. Водопоглощение по объему всегда меньше 100 %, а по массе может быть более 100 % (теплоизоляционные материалы способны поглащать значительно больше воды, чем их масса).

Водопоглощение ухудшает основные свойства материалов, увеличивает теплопроводность и среднюю плотность, уменьшает прочность, так как связь между частицами материала ослабляется.

Степень снижения прочности материала при предельном его водонасыщении называют водостойкостью и характеризуют коэффициентом размягчения, который равен отношению предела прочности при сжатии материала, насыщенного водой, к пределу прочности при сжатии сухого материала.

Материалы с коэффициентом размягчения не менее 0,8 относят к водостойким. Такие материалы применяют в конструкциях, работающих в воде, и в местах с повышенной влажностью.

Влагоотдача – это свойство материала терять находящуюся в его порах влагу. Влагоотдача характеризуется количеством воды в % (по массе или объему), теряемым стандартным образцом материала в сутки при относительной влажности окружающего воздуха 60 % и температуре окружающей среды 20°С.

Влагоотдача имеет большое значение для многих материалов и изделий. Например, стеновые панели и блоки в процессе возведения здания обычно имеют повышенную влажность, а в последствии, благодаря водоотдаче, высыхают: вода испаряется из них до тех пор, пока не установится равновесие между влажностью материала стен и влажностью окружающего воздуха.

Гигроскопичность – это свойство материалов поглощать влагу из воздуха. Гигроскопичные материалы (древесина, теплоизоляционные материалы, кирпичи полусухого прессования и др.) могут поглощать большое количество воды, при этом увеличивается их масса, снижается прочность, изменяются размеры. Во избежание этого для древесины и ряда других материалов и конструкций приходится применять защитные покрытия, а применение для кладки кирпича сухого прессования ограничивается зданиями и помещениями с пониженной влажностью воздуха.

Водопроницаемость – это способность материала пропускать воду под давлением. Водопроницаемость характеризуется количеством воды, прошедшей в течение 1 ч через образец площадью 1 м2 и толщиной 1 м при постоянном давлении. К водонепроницаемым относятся особо плотные материалы (стекло, битум и др.) и плотные материалы с замкнутыми порами (бетон специального состава).

Морозостойкость – это свойство материала в насыщенном водой состоянии выдерживать многократное замораживание и оттаивание без видимых признаков разрушения (трещин, выкрашивания, расслаивания) и без снижения прочности и массы. Это свойство особенно важно для материалов, используемых для фундаментов, стен, кровли и др., подвергающихся попеременному замораживанию и оттаиванию. Они должны быть повышенной морозостойкости. Высокой морозостойкостью характеризуются плотные материалы, не имеющие пор, или материалы с незначительной открытой пористостью, водопоглощение которых не превышает 0,5 %.

Морозостойкость материалов проверяют в холодильных камерах многократным замораживанием насыщенных водой образцов и последующим их оттаиванием в воде при комнатной температуре. Материал считают морозостойким, если после определенного количества циклов замораживания и оттаивания потеря массы образца за счет выкрашивания и расслаивания не превышает 5 %, а снижение прочности образца – не более 25 %.

Морозостойкость характеризуется коэффициентом морозостойкости, который определяется отношением предела прочности при сжатии материала после испытания на морозостойкость к пределу прочности насыщенного водой материала.

Паро– и газопроницаемость – это свойства материала пропускать под давлением водяной пар или газы (воздух). Все пористые материалы с незамкнутыми порами способны пропускать пар или газ. Паро– или газопроницаемость материала характеризуются соответственно коэффициентом паро– и газопроницаемости, численно равным количеству пара или газа в литрах, проходящего через слой материала толщиной 1 м и площадью 1 м2 в течение 1 ч при разности парциальных давлений на противоположных стенках 133,3 Па.

Коэффициент паропроницаемости учитывают при выборе материалов для изоляции сооружений и объектов. Наиболее наглядный пример – домашние холодильники, работающие при температурах более низких, чем температура окружающего воздуха, так как водяные пары, проникая из окружающего воздуха в изолируемую конструкцию, конденсируются и превращаются в капли воды, увлажняют конструкцию и ухудшают ее теплозащитные свойства. Газо– и воздухопроницаемость – важный показатель материалов для наружных стен и покрытий зданий.

Теплопроводность – свойство материала передавать теплоту при наличии разности температур с одной и другой сторон. Теплопроводность материала оценивается количеством теплоты в Дж, проходящей через образец толщиной 1 м, площадью 1 м2 за 1 ч при разности температур противоположных поверхностей образца 1 °С.

Теплопроводность материала зависит от природы и строения материала, пористости, влажности, а также от средней температуры, при которой происходит передача теплоты. Материалы кристаллического и крупнопористого строения обычно более теплопроводны, чем материалы аморфного и мелкопористого строения. Если материал имеет слоистое или волокнистое строение, то теплопроводность его зависит от направления потока теплоты по отношению к волокнам, например теплопроводность древесины вдоль волокон в два раза больше, чем поперек волокон. Материалы с замкнутыми порами имеют меньшую теплопроводность, чем материалы с сообщающимися порами. Теплопроводность однородного материала зависит от средней плотности (чем меньше плотность, тем меньше теплопроводность, и наоборот). К примеру, теплопроводность в воздушно-сухом состоянии тяжелого бетона 1,3-1,6, керамического кирпича 0,8-0,9, минеральной ваты 0,06-0,09 Вт/(м•°С). Влажные материалы более теплопроводны, чем сухие. Объясняется это тем, что теплопроводность воды в 25 раз выше теплопроводности воздуха. При повышении температуры теплопроводность увеличивается, что имеет существенное значение для выбора теплоизоляционных материалов, применяемых для изоляции трубопроводов, котельных установок и др.

От теплопроводности зависит толщина стен и перекрытий отапливаемых зданий, толщина тепловой изоляции горячих поверхностей, например трубопроводов.

Читать книгуСкачать книгу